
Cross rules and non-Abelian lattice equations for the discrete and confluent non-scalar ε-

algorithms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 205201

(http://iopscience.iop.org/1751-8121/43/20/205201)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/20
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 205201 (11pp) doi:10.1088/1751-8113/43/20/205201

Cross rules and non-Abelian lattice equations for the
discrete and confluent non-scalar ε-algorithms

C Brezinski

Laboratoire Paul Painlevé, UMR CNRS 8524, UFR de Mathématiques Pures et Appliquées,
Université des Sciences et Technologies de Lille, 59655–Villeneuve d’Ascq cedex, France

E-mail: Claude.Brezinski@univ-lille1.fr

Received 8 February 2010, in final form 24 March 2010
Published 23 April 2010
Online at stacks.iop.org/JPhysA/43/205201

Abstract
In this paper, we give the cross rules of the discrete and confluent vector,
topological and matrix ε-algorithms. Then, from the rules of these confluent
algorithms, we derive non-Abelian lattice equations, in particular some
extensions of the Lotka–Volterra system, in the style of the equation related to
the confluent form of the scalar ε-algorithm.

PACS numbers: 02.30.Ik, 02.30.Lt, 02.30.Mv

1. Introduction and motivations

In this paper, we are discussing two cases: the case of a sequence of vectors or matrices (Sn),
and the case of a vector or a matrix function f (t). A sequence transformation transforms
(Sn) into a new sequence (Tn) which, under some assumptions, converges to S = limn→∞ Sn

faster than (Sn), that is such that limn→∞ ‖Tn − S‖/‖Sn − S‖ = 0. Similarly, a function
transformation transforms f into a new function g which, under some assumptions, converges
to S = limt→∞ f (t) faster than f , that is such that limt→∞ ‖g(t) − S‖/‖f (t) − S‖ = 0.
For many transformations, the new sequence (Tn) and the new function g depend on an index
k, and are given as a ratio of determinants of dimension related to k; see [9] for a review.
Since determinants cannot be easily computed, a recursive algorithm for implementing the
sequence or the function transformation is needed. Such an algorithm is called a vector (or
matrix) extrapolation algorithm; it is a discrete vector extrapolation algorithm in the case of a
sequence, and a confluent one in the case of a function. In these algorithms, a division by zero
could sometimes occur and, for some of them, it is possible to derive singular rules which
allow us to jump over the singularity (or over several of them arising consecutively), and to
continue the computation (in the language of discrete systems, the singularity is said to be
confined). This is the point of view of numerical analysis on this topic.

But there is another point of view, which comes from discrete systems. A discrete system
is characterized by a (usually nonlinear) difference equation obtained by discretization of a

1751-8113/10/205201+11$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/20/205201
mailto:Claude.Brezinski@univ-lille1.fr
http://stacks.iop.org/JPhysA/43/205201

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

(usually nonlinear) partial differential equation. It is important that the discretized scheme
conserves the quantities that are conserved by the partial differential equation itself. A crucial
character is the integrability of the equation. Although this term has not yet received a
completely satisfactory definition, it can be understood either as the ability to express the
solution in a close form, or as the confinement of singularities in finite domains, or both,
two features which exist for the extrapolation algorithms mentioned above [3, 12, 18, 19].
Integrability is a rare phenomenon, and dynamical systems are typically non-integrable. This
is the reason why extrapolation algorithms are important in the domain of integrable discrete
systems; see, for example, [12, 16, 17]. There exist many connections between iterative
procedures used in numerical analysis and dynamical systems; see [4], [5, chapter 10], [7] and
[10] for a review.

In many extrapolation algorithms, two types of vectors are usually computed: half of
them are directly related to the transformation to be implemented, while the other ones are
intermediate computations. The cross rule of an extrapolation algorithm is a recurrence
relation which allows us to implement the transformation by computing only the vectors
directly related to it, without computing the intermediate vectors (or vice versa). Many new
cross rules of discrete and confluent scalar extrapolation algorithms were derived in [8].

Among extrapolation algorithms, the most popular one is the scalar ε-algorithm devised
by Wynn [21]. It allows us to implement a scalar sequence transformation due to Shanks [20].
Wynn extended it to the vector and matrix cases in [23]. Since the vector ε-algorithm was
obtained directly from the rules of the scalar one and, thus, was lacking an algebraic support,
a vector transformation similar to Shanks’ (or, more generally, a transformation for elements
of a vector space), and the corresponding ε-algorithm, called topological, were derived in [1].
Wynn also proposed a confluent ε-algorithm [22], and a confluent topological ε-algorithm
was given in [2]. Other non-scalar generalizations of the ε-algorithm also exist; see [3] for a
review.

The aim of this paper is twofold. First, we derive the cross rules of the discrete and
confluent vector, topological and matrix ε-algorithms. Such cross rules are useful in numerical
analysis for the implementation of sequence and function transformations, and also in the proof
of some theoretical results related to them; moreover, as explained above and in [3, 12, 18, 19],
they are involved in the integrability of discrete systems. Then, we will show how the rules
of these confluent algorithms lead us to coupled non-Abelian lattice equations, in particular
to some extensions of the Lotka–Volterra system, in the style of the equation related to the
confluent form of the scalar ε-algorithm. Obviously, the exact relations between non-scalar
convergence acceleration algorithms and non-commutative integrable systems (described, for
example, in [14]) remain to be discovered.

2. The case of dimension 2

Let (Vn) be a sequence of vectors in R
2, and set Vn = (xn, yn)

T . We convert this sequence
into the sequence of the complex numbers (Sn) with Sn = xn + iyn, where i = √−1. Since
the cross rule of any discrete scalar extrapolation algorithm is valid for sequences of complex
numbers, we apply it to (Sn) and, then, we separate the real and imaginary parts of the results
thus leading to a cross rule in dimension 2. This idea was already exploited in [8].

The same idea applies to two-dimensional functions of a real variable. Let v(t) =
(x(t), y(t))T . We convert it into the complex function f (t) = x(t) + iy(t), apply any
confluent scalar function transformation to it and, then, separate the real and imaginary parts
of the results. This idea was already used in [6] for the treatment of the Gibbs phenomenon
in Fourier and polynomials series, and in [8] to extend the usual Lotka–Volterra equation to

2

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

the case of two-dimensional vectors as follows. The confluent form of the scalar ε-algorithm
obeys the rule

εk+1(t) = εk−1(t) + (ε′
k(t))

−1, k = 0, 1, . . .

with ε−1(t) = 0 and ε0(t) = f (t). Setting Mk(t) = ε′
k(t), differentiating the preceding

relation and applying the Miura transformation Nk(t) = Mk(t)Mk+1(t) transforms this rule
into the Lotka–Volterra equation

N ′
k(t) = Nk(t)[Nk−1(t) − Nk+1(t)].

Assume now that we want to write such an equation for the two-dimensional vectors
(Rk(t), Ik(t))

T . Let us write them as Nk(t) = Rk(t) + iIk(t). Then, separating the real
and imaginary parts in the Lotka–Volterra equation above leads to the coupled system

R′
k(t) = Rk(t)[Rk−1(t) − Rk+1(t)] − Ik(t)[Ik−1(t) − Ik+1(t)]

I ′
k(t) = Rn(t)[Ik−1(t) − Ik+1(t)] + Ik(t)[Rk−1(t) − Rk+1(t)].

This system was given in [15] without explaining its derivation which was presented in [24].

3. Discrete algorithms

3.1. The vector ε-algorithm

The vector ε-algorithm was obtained by Wynn [22]. Its rule is

ε
(n)
k+1 = ε

(n+1)
k−1 +

[
ε

(n+1)
k − ε

(n)
k

]−1
,

with ε
(n)
−1 = 0 ∈ C

p, ε
(n)
0 = Sn ∈ C

p, and where the inverse of a vector y ∈ C
p is defined as

z−1 = z̄/(z, z) ∈ C
p,

where (u, v) = uT v̄ is the inner product of the vectors u and v in C
p.

Since the rule of the vector ε-algorithm is the same as the rule of the scalar one, and since
(y−1)−1 = y, its cross rule is the same. Moreover, for any vector algorithm of the form (called
the γ -algorithm)

γ
(n)
k+1 = γ

(n+1)
k−1 + a

(n)
k

(
γ

(n+1)
k − γ

(n)
k

)−1
, k, n = 0, 1, . . .

with, for all n, γ
(n)
−1 = 0 and γ

(n)
0 = Sn, and where the a

(n)
k ’s are numbers, the cross rule is [8]

Property 1. The cross rule of the vector γ -algorithm is

a
(n−1)
k+1

(
γ

(n−1)
k+2 − γ

(n)
k

)−1
+ a

(n)
k−1

(
γ

(n+1)
k−2 − γ

(n)
k

)−1

= a
(n)
k

(
γ

(n+1)
k − γ

(n)
k

)−1
+ a

(n−1)
k

(
γ

(n−1)
k − γ

(n)
k

)−1
,

with, for all n, γ
(n)
−2 = (∞, . . . ,∞)T ∈ C

p (so the inverse of any infinity vector is the zero

vector), γ
(n)
−1 = 0 ∈ C

p, γ
(n)
0 = Sn ∈ C

p and γ
(n)
1 = a

(n)
0 (�Sn)

−1 ∈ C
p.

After inversion, this cross rule allows us to compute γ
(n−1)
k+2 from the four other vectors,

starting from the initial conditions.

3

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

3.2. The topological ε-algorithm

Let E be a vector space on R or C, and E∗ its dual, that is the vector space of linear forms on
E. Let (Sn) be a sequence of elements of E. The duality product between E and E∗ is denoted
by 〈z, y〉, where y ∈ E and z ∈ E∗.

The topological e–transformation is defined by

ek(Sn) =

∣∣∣∣∣∣∣∣∣

Sn · · · Sn+k

〈z,�Sn〉 · · · 〈z,�Sn+k〉
...

...

〈z,�Sn+k−1〉 · · · 〈z,�Sn+2k−1〉

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 · · · 1
〈z,�Sn〉 · · · 〈z,�Sn+k〉

...
...

〈z,�Sn+k−1〉 · · · 〈z,�Sn+2k−1〉

∣∣∣∣∣∣∣∣∣

.

These vectors can be recursively computed by the topological ε-algorithm which obeys
the rules

ε
(n)
2k+1 = ε

(n+1)
2k−1 +

z〈
z, ε

(n+1)
2k − ε

(n)
2k

〉

ε
(n)
2k+2 = ε

(n+1)
2k +

ε
(n+1)
2k − ε

(n)
2k〈

ε
(n+1)
2k+1 − ε

(n)
2k+1, ε

(n+1)
2k − ε

(n)
2k

〉 ,
with ε

(n)
−1 = 0 ∈ E∗, ε

(n)
0 = Sn ∈ E, and where z is any nonzero element of E∗ such that the

denominators do not vanish. Thus, ε
(n)
2k+1 ∈ E∗, and ε

(n)
2k+2 ∈ E, and it holds

ε
(n)
2k = ek(Sn), ε

(n)
2k+1 = [ek(�Sn)]

−1 = z

〈z, ek(�Sn)〉 .

Of course, in most applications, E and E∗ will be R
p or C

p and, in such cases, the duality
product reduces to the ordinary scalar or inner product of two vectors. However, it is easier to
understand the different role played by the elements with an odd and an even lower index by
treating the more general setting.

For obtaining this algorithm, it is necessary to define the inverse (y−1, z−1) ∈ E∗ × E (in
this order) of a couple of elements (z, y) ∈ E∗ × E (in this order), instead of the inverse of
one single element of E or E∗. This definition is

y−1 = z

〈z, y〉 ∈ E∗, z−1 = y

〈z, y〉 ∈ E.

We have

(y−1)−1 = y, (z−1)−1 = z, 〈y−1, y〉 = 1, 〈z, z−1〉 = 1.

We will say that y−1 (respectively z−1) is the inverse of y (respectively z) with respect to z

(respectively y), or in the couple (z, y).
Thus, for writing the topological ε-algorithm as

ε
(n)
k+1 = ε

(n+1)
k−1 +

(
ε

(n+1)
k − ε

(n)
k

)−1

one has to consider that(
ε

(n+1)
2k − ε

(n)
2k

)−1 = z〈
z, ε

(n+1)
2k − ε

(n)
2k

〉
4

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

is the inverse of ε
(n+1)
2k − ε

(n)
2k in the couple

(
z, ε

(n+1)
2k − ε

(n)
2k

)
, that is with respect to z, while

(
ε

(n+1)
2k+1 − ε

(n)
2k+1

)−1 = z−1〈
ε

(n+1)
2k+1 − ε

(n)
2k+1, z

−1
〉 = ε

(n+1)
2k − ε

(n)
2k〈

ε
(n+1)
2k+1 − ε

(n)
2k+1, ε

(n+1)
2k − ε

(n)
2k

〉
is the inverse of ε

(n+1)
2k+1 − ε

(n)
2k+1 in the couple

(
ε

(n+1)
2k+1 − ε

(n)
2k+1, z

−1
)
, that is with respect to z−1.

It is also the inverse of ε
(n+1)
2k+1 − ε

(n)
2k+1 in the couple

(
ε

(n+1)
2k+1 − ε

(n)
2k+1, ε

(n+1)
2k − ε

(n)
2k

)
, that is with

respect to ε
(n+1)
2k − ε

(n)
2k . Indeed, we also have

z−1 = ε
(n+1)
2k − ε

(n)
2k〈

z, ε
(n+1)
2k − ε

(n)
2k

〉 ,
and the inverse of z−1 is always taken in the couple

([
ε

(n+1)
2k −ε

(n)
2k

]−1
, z−1

)
, that is with respect

to
[
ε

(n+1)
2k − ε

(n)
2k

]−1
in order that (z−1)−1 = z.

Since the inverse of the inverse of an element of E or E∗ is the element itself, the cross
rule given in property 1 is valid for the topological ε-algorithm with a

(n)
k = 1 for all k and n.

However, although their form is the same, there is an important difference between these two
cross rules because, for the topological ε-algorithm, the couple in which each inverse has to
be taken (which is not the same for the cross rule and for the rule of the algorithm) must be
clearly pointed out. Thus, we will give the complete proof.

Property 2. The cross rule of the topological ε-algorithm is(
ε

(n−1)
k+2 − ε

(n)
k

)−1
+

(
ε

(n+1)
k−2 − ε

(n)
k

)−1 = (
ε

(n+1)
k − ε

(n)
k

)−1
+

(
ε

(n−1)
k − ε

(n)
k

)−1
,

with, for all n, ε
(n)
−2 = ∞ ∈ E, ε

(n)
−1 = 0 ∈ E∗, ε

(n)
0 = Sn ∈ E and ε

(n)
1 = (�Sn)

−1 ∈ E∗.

Proof. The first rule of the algorithm writes〈
z, ε

(n+1)
2k − ε

(n)
2k

〉(
ε

(n)
2k+1 − ε

(n+1)
2k−1

) = z.

Inverting z with respect to ε
(n+1)
2k − ε

(n)
2k gives

1〈
z, ε

(n+1)
2k − ε

(n)
2k

〉 (ε(n)
2k+1 − ε

(n+1)
2k−1

)−1 = z−1 = ε
(n+1)
2k − ε

(n)
2k〈

z, ε
(n+1)
2k − ε

(n)
2k

〉 ,
that is ε

(n+1)
2k − ε

(n)
2k = (

ε
(n)
2k+1 − ε

(n+1)
2k−1

)−1
. Applying the forward difference operator � to the

second rule of the algorithm gives

�ε
(n)
2k+2 − �ε

(n+1)
2k = �

([
�ε

(n)
2k+1

]−1)
,

which, after replacement using the preceding relation, is the cross rule for the odd indices(
ε

(n)
2k+3 − ε

(n+1)
2k+1

)−1
+

(
ε

(n+2)
2k−1 − ε

(n+1)
2k+1

)−1 = (
ε

(n+2)
2k+1 − ε

(n+1)
2k+1

)−1
+

(
ε

(n)
2k+1 − ε

(n+1)
2k+1

)−1
.

Similarly, for the second rule, we have〈
ε

(n+1)
2k+1 − ε

(n)
2k+1, ε

(n+1)
2k − ε

(n)
2k

〉(
ε

(n)
2k+2 − ε

(n+1)
2k

) = ε
(n+1)
2k − ε

(n)
2k .

Inverting ε
(n+1)
2k − ε

(n)
2k with respect to ε

(n+1)
2k+1 − ε

(n)
2k+1 (and not with respect to z as in the first

rule of the algorithm) since the inverse of ε
(n+1)
2k+1 − ε

(n)
2k+1 is taken with respect to ε

(n+1)
2k − ε

(n)
2k ,

we obtain
1〈

ε
(n+1)
2k+1 − ε

(n)
2k+1, ε

(n+1)
2k − ε

(n)
2k

〉 (ε(n)
2k+2 − ε

(n+1)
2k

)−1 = (
ε

(n+1)
2k − ε

(n)
2k

)−1

= ε
(n+1)
2k+1 − ε

(n)
2k+1〈

ε
(n+1)
2k+1 − ε

(n)
2k+1, ε

(n+1)
2k − ε

(n)
2k

〉
5

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

that is
(
ε

(n)
2k+2 − ε

(n+1)
2k

)−1 = ε
(n+1)
2k+1 − ε

(n)
2k+1. Applying the operator � to the first rule of the

algorithm gives

�ε
(n)
2k+1 − �ε

(n+1)
2k−1 = �

([
�ε

(n)
2k

]−1)
.

Then, by replacement, we finally get the cross rule for the even indices(
ε

(n)
2k+2 − ε

(n+1)
2k

)−1
+

(
ε

(n+2)
2k−2 − ε

(n+1)
2k

)−1 = (
ε

(n+2)
2k − ε

(n+1)
2k

)−1
+

(
ε

(n)
2k − ε

(n+1)
2k

)−1
. �

Remark 1. There is an important difference between the cross rules of the vector and the
topological ε-algorithm. In the vector case, the cross rule involves only vectors with lower
indices of the same parity and, thus, it allows, by inversion, us to compute directly the vector
with the highest lower index. In the topological case, although the cross rule seems to involve
elements of E or E∗ with lower indexes of the same parity, it, in fact, involves elements with
a different parity due to the definition of the inverse of a couple of elements in E∗ × E. Thus,
this cross rule does not allow us to compute the element with the highest lower index that it
contains without using elements with indices of the opposite parity.

In fact, since
(
ε

(n)
2k+1 − ε

(n+1)
2k−1

)−1 = ε
(n+1)
2k − ε

(n)
2k and

(
ε

(n)
2k+2 − ε

(n+1)
2k

)−1 = ε
(n+1)
2k+1 − ε

(n)
2k+1,

this cross rule is nothing else than a simple rewriting of the rule of the topological ε-algorithm
for the upper indices n and n + 1, followed by a subtraction between them.

3.3. The matrix ε-algorithm

Let us now assume that (Sn) is a sequence of square matrices. The matrix ε-algorithm is
defined by the same rule as the vector one, after replacing the inverse of a vector by the
ordinary inverse of a matrix. Thus, the same cross rule also holds.

4. Confluent algorithms

Confluent algorithms are obtained from the discrete ones by setting ε
(n)
k = εk(t + nh), and

then letting h tend to zero; for details, see [9].

4.1. The confluent vector ε-algorithm

The confluent vector ε-algorithm is defined by the rule

εk+1(t) = εk−1(t) + [ε′
k(t)]

−1,

with ε−1(t) = 0 ∈ C
p, ε0(t) = f (t) ∈ C

p, and where the inverse of a vector is defined as
above, that is [ε′

k(t)]
−1 = ε̄′

k(t)/(ε
′
k(t), ε

′
k(t)).

Remark 2. If we discretize this differential equation using the Euler-type scheme given in
[13], we get (

εn+1
k − ε

(n)
k

)−1 = τ
(
ε

(n)
k+1 − ε

(n+1)
k−1

)
,

where ε
(n)
k is the approximate solution εk(t) at the point t = nτ . Thus, the rule of the confluent

vector ε-algorithm is recovered with a unit time step τ = 1. With a different value of τ , the
same vectors ε

(n)
2k are obtained, while the vectors ε

(n)
2k+1 are divided by τ .

For this algorithm, the cross rule is similar to the cross rule of the confluent scalar
ε-algorithm

6

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

Property 3. The cross rule of the confluent vector ε-algorithm is

(εk+2(t) − εk(t))
−1 + (εk−2(t) − εk(t))

−1 = ([ε′
k(t)]

−1)′,

with, for all t, ε−2(t) = ∞ ∈ C
p (so, the inverse of any infinity vector is the zero vector),

ε−1(t) = 0 ∈ C
p, ε0(t) = f (t) ∈ C

p and ε1(t) = (f ′(t))−1 ∈ C
p.

Proof. Differentiating the rule of the algorithm gives

ε′
k+1(t) = ε′

k−1(t) + ([ε′
k(t)]

−1)′. (1)

But, since (y−1)−1 = y,

ε′
k+1(t) = (εk+2(t) − εk(t))

−1,

and a similar relation for ε′
k−1(t), which yields the result. �

After inversion, this cross rule allows us to determine εk+2(t) from the two other vector
functions, starting from the initial conditions.

Let us now discuss the link between the confluent vector ε-algorithm and discrete systems.
Setting Mk = ε′

k (for simplicity, the variable t is suppressed, and the functions are in R
p),

relation (1) writes

Mk+1 − Mk−1 = (
M−1

k

)′ =
(

Mk

(Mk,Mk)

)′
,

that is

(Mk,Mk)
2[Mk+1 − Mk−1] = (Mk,Mk)M

′
k − (Mk,Mk)

′Mk = (Mk,Mk)M
′
k − 2(M ′

k,Mk)Mk.

Now, setting Nk = (Mk,Mk+1), and multiplying scalarly the preceding relation by Mk,
gives

(Mk,Mk)[Nk − Nk−1] = (M ′
k,Mk) − (Mk,Mk)

′ = −(M ′
k,Mk) = − 1

2 (Mk,Mk)
′.

It does not seem possible to eliminate Mk for obtaining a Lotka–Volterra equation.
However, if we set Pk = (Mk,Mk), then P ′

k = 2(M ′
k,Mk), and the preceding relation

produces the following kind of Lotka–Volterra equation:

P ′
k = 2Pk[Nk−1 − Nk].

A differential equation relating N ′
k = (M ′

k,Mk+1) + (Mk,M
′
k+1) to Nk and Pk does not

seem to hold since it will need to introduce new scalar products.

4.2. The confluent topological ε-algorithm

The confluent topological e-transformation is defined by

ek(f (t)) =

∣∣∣∣∣∣∣∣∣

f (t) · · · f (k)(t)

〈z, f ′(t)〉 · · · 〈z, f (k+1)(t)〉
...

...

〈z, f (k−1)(t)〉 · · · 〈z, f (2k−1)(t)〉

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 · · · 1
〈z, f ′(t)〉 · · · 〈z, f (k+1)(t)〉

...
...

〈z, f (k−1)(t)〉 · · · 〈z, f (2k−1)(t)〉

∣∣∣∣∣∣∣∣∣

.

7

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

These vector functions can be recursively computed by the confluent topological ε-
algorithm proposed in [2]. It is based on the inverse of a couple of elements of E∗ × E as
defined above. It is as follows:

ε2k+1(t) = ε2k−1(t) +
z

〈z, ε′
2k(t)〉

∈ E∗

ε2k+2(t) = ε2k(t) +
ε′

2k(t)

〈ε′
2k+1(t), ε

′
2k(t)〉

∈ E,

with ε−1(t) = 0 ∈ E∗, ε0(t) = f (t) ∈ E, and where z ∈ E∗ is any nonzero element of E∗

such that the denominators do not vanish. It holds

ε2k(t) = ek(f (t)), ε2k+1(t) = [ek(f
′(t))]−1 = z

〈z, ek(f ′(t))〉 .
For writing this algorithm under the form

εk+1(t) = εk−1(t) + (ε′
k(t))

−1

one has to consider that

(ε′
2k(t))

−1 = z

〈z, ε′
2k(t)〉

is the inverse of ε′
2k(t) in the couple (z, ε′

2k(t)), that is with respect to z, while

(ε′
2k+1(t))

−1 = ε′
2k(t)

〈ε′
2k+1(t), ε

′
2k(t)〉

is the inverse of ε′
2k+1(t) in the couple (ε′

2k+1(t), z
−1), that is with respect to z−1. It is also its

inverse in the couple (ε′
2k+1(t), ε

′
2k(t)), that is with respect to ε′

2k(t). Indeed, we also have

z−1 = ε′
2k(t)

〈z, ε′
2k(t)〉

,

and the inverse of z−1 is always taken in the couple ([ε′
2k(t)]

−1, z−1) in order that (z−1)−1 = z.
Contrarily to the topological ε-algorithm where z had to be fixed, the element z ∈ E∗

in the confluent topological ε-algorithm can depend on t, a property which was never noted
before.

Similarly to the confluent vector ε-algorithm, the cross rule given in property 3 still holds
for the confluent topological ε-algorithm. However, although their form is the same, there is
an important difference between these two cross rules because, for the confluent topological
ε-algorithm, the couple in which each inverse has to be taken (which is not the same for the
cross rule and for the rule of the algorithm) must be clearly understood. Thus, we will give
the complete proof.

Property 4. The cross rule of the confluent topological ε-algorithm is

(εk+2(t) − εk(t))
−1 + (εk−2(t) − εk(t))

−1 = ([ε′
k(t)]

−1)′,

with, for all t, ε−2(t) = ∞ ∈ E, ε−1(t) = 0 ∈ E∗, ε0(t) = f (t) ∈ E and ε1(t) =
(f ′(t))−1 ∈ E∗.

Proof. from the first rule of the algorithm, we have (the variable t has been suppressed for
simplicity)

〈z, ε′
2k〉(ε2k+1 − ε2k−1) = z.

Inverting z with respect to ε′
2k gives

1

〈z, ε′
2k〉

(ε2k+1 − ε2k−1)
−1 = z−1 = ε′

2k

〈z, ε′
2k〉

,

8

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

that is ε′
2k = (ε2k+1 − ε2k−1)

−1. Differentiating now the second relation of the algorithm gives

ε′
2k+2 − ε′

2k = ([ε′
2k+1]−1)′,

which proves the cross rule for the odd indices after replacement of the derivatives on the
left-hand side:

(ε2k+3 − ε2k+1)
−1 + (ε2k−1 − ε2k+1)

−1 = ([ε′
2k+1]−1)′.

Similarly, from the second rule of the algorithm,

〈ε′
2k+1, ε

′
2k〉(ε2k+2 − ε2k) = ε′

2k.

Inverting ε′
2k with respect to ε′

2k+1 (and not with respect to z as in the first rule of the algorithm
since the inverse of ε′

2k+1 is taken with respect to ε′
2k in this second rule of the algorithm) gives

1

〈ε′
2k+1, ε

′
2k〉

(ε2k+2 − ε2k)
−1 = (ε′

2k)
−1 = ε′

2k+1

〈ε′
2k+1, ε

′
2k〉

,

that is ε′
2k+1 = (ε2k+2 − ε2k)

−1. Differentiating the first relation of the algorithm, we obtain

ε′
2k+1 − ε′

2k−1 = ([ε′
2k]−1)′,

which proves the cross rule for the even indices after replacement of the derivatives on the
left-hand side:

(ε2k+2 − ε2k)
−1 + (ε2k−2 − ε2k)

−1 = ([ε′
2k]−1)′. �

Remark 3. The important difference mentioned in Remark 1 is still valid for the cross rules
of the confluent vector and topological ε-algorithms.

Let us now assume that E = E∗ = R
p. Thus, the duality product 〈·, ·〉 becomes the usual

scalar product (·, ·). Differentiating the first rule of the algorithm gives

(z, ε′
2k)

2[ε′
2k−1 − ε′

2k+1] = (z, ε′′
2k)z.

Multiplying scalarly this relation by ε′
2k and setting Mk = (z, ε′

k) and Pk = (ε′
k, ε

′
k+1) yields

M ′
2k = M2k[P2k−1 − P2k]. (2)

Similarly, differentiating the second rule of the algorithm gives

(ε′
2k+1, ε

′
2k)

2[ε′
2k+2 − ε′

2k] = ε′′
2k(ε

′
2k+1, ε

′
2k) − ε′

2k(ε
′
2k+1, ε

′
2k)

′,

that is

P 2
2k[M2k+2 − M2k] = M ′

2kP2k − M2kP
′
2k.

Replacing M ′
2k by its expression (2) produces

M2kP
′
2k = P2k[M2kP2k−1 − M2k+2P2k]. (3)

Thus, (2) and (3) form a couple of Lotka–Volterra-type equations.

Remark 4. Let us try to explain why it was not possible to obtain a similar result for the
confluent vector ε-algorithm. In this algorithm, the inverse of a vector y was defined as
y−1 = ȳ/(y, y). But, if we consider y as a rectangular matrix, its Moore–Penrose inverse
is defined as y† = ȳT /(y, y). Thus,ȳ† is a row vector which, when applied to any vector,
appears as a linear form on C

p, that is as belonging to the dual space (which, in this case is
also C

p), and not as an element of the space itself. This is another argument that the (discrete
or confluent) topological ε-algorithm, instead of the (discrete or confluent) vector one, is the
natural generalization of the (discrete or confluent) scalar ε-algorithm.

9

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

4.3. The confluent matrix ε-algorithm

Similarly, if f (t) is a matrix function of t, the confluent matrix ε-algorithm is defined by the
same rule as for the confluent vector one, and the same cross rule is still valid. Integrating
the confluent matrix ε-algorithm by the Euler-type scheme of [13] leads to the usual discrete
matrix ε-algorithm.

Differentiating the rule of this algorithm gives (1) again, and, setting again Mk = ε′
k , we

now have

Mk+1 − Mk−1 = (
M−1

k

)′ = −M−1
k M ′

kM
−1
k ,

by using the usual formula (A−1)′ = −A−1A′A−1 for the derivative of the inverse of matrix
A. Thus, we obtain the following matrix discrete equation:

M ′
k = Mk[Mk−1 − Mk+1]Mk

= Pk−1Mk − MkPk

= MkNk−1 − NkMk,

if we set Nk = MkMk+1 and Pk = Mk+1Mk .
Deriving Nk and Pk, we have

N ′
k = M ′

kMk+1 + MkM
′
k+1, P ′

k = M ′
k+1Mk + Mk+1M

′
k.

Replacing M ′
k by its expression above, we obtain, after an easy manipulation, the couple of

equations

N ′
k = Pk−1Nk − NkPk+1 (4)

P ′
k = PkNk−1 − Nk+1Pk. (5)

Defining the shift operator E acting on a sequence (uk) by Enuk = uk+n, these equations
write

N ′
k = (E−1Pk)Nk − Nk(EPk) = Pk−1(ENk−1) − Nk(EPk)

P ′
k = Pk(E

−1Nk) − (ENk)Pk = (EPk−1)Nk−1 − (ENk)Pk.

Let us mention that the shift operator E also plays a role in the discrete zero curvature equations
considered in [11] to master symmetries of lattice equations.

Let [L,B] = LB − BL be the matrix commutator of the matrices L and B. It is easy to
see that relations (4) and (5) can be written as an extended coupled Lotka–Volterra system

N ′
k = [Pk−1, Nk] + Nk(Pk−1 − Pk+1)

= [Pk+1, Nk] + (Pk−1 − Pk+1)Nk

P ′
k = [Pk,Nk+1] + Pk(Nk−1 − Nk+1)

= [Pk,Nk−1] + (Nk−1 − Nk+1)Pk.

If, for all k, the matrices Nk and Pk−1 commute, then we obtain the coupled Lotka–Volterra
equation

N ′
k = Nk[Pk−1 − Pk+1]

P ′
k = Pk[Nk−1 − Nk+1],

while, if Nk commutes with Pk+1 for all k, we get

N ′
k = [Pk−1 − Pk+1]Nk

P ′
k = [Nk−1 − Nk+1]Pk.

10

J. Phys. A: Math. Theor. 43 (2010) 205201 C Brezinski

Acknowledgments

Thanks are due to Basil Grammaticos, Yoshimasa Nakamura and Jonathan Nimmo for
providing useful references. I am grateful to Xing-Biao Hu for comments on this paper.
I also thank the reviewers for useful remarks which helped to clarify some points in the paper.

References

[1] Brezinski C 1975 Généralisations de la transformation de Shanks, de la table de Padé et de l’ε-algorithme
Calcolo 12 317–60

[2] Brezinski C 1975 Forme confluente de l’ε-algorithme topologique Numer. Math. 23 363–70
[3] Brezinski C 2000 Convergence acceleration during the 20th century J. Comput. Appl. Math. 122 1–21
[4] Brezinski C 2001 Dynamical systems and sequence transformations J. Phys. A: Math. Gen. 34 10659–69
[5] Brezinski C 2002 Computational Aspects of Linear Control (Dordrecht: Kluwer)
[6] Brezinski C 2004 Extrapolation algorithms for filtering series of functions, and treating the Gibbs phenomenon

Numer. Algorithms 36 309–29
[7] Brezinski C 2007 A brief introduction to integrable systems Int. J. Comput. Sci. Math. 1 98–106
[8] Brezinski C, He Y, Hu X-B and Sun J-Q Cross rules of some extrapolation algorithms unpublished
[9] Brezinski C and Redivo–Zaglia M 1991 Extrapolation Methods. Theory and Practice (Amsterdam: North–

Holland)
[10] Chu M T 2008 Numerical linear algebra algorithms as dynamical systems Acta Numerica 17 1–86
[11] Fuchssteiner B and Ma W-X 1999 An approach to master symmetries of lattice equations Symmetries and

Integrability of Differential Equations ed P A Clarkson and F W Nijhoff (Cambridge: Cambridge University
Press) pp 247–60

[12] Grammaticos B, Halburd R G, Ramani A and Viallet C-M 2009 How to detect the integrability of discrete
systems J. Phys. A: Math. Theor. 42 454002

[13] Hirota R, Tsujimoto S and Imai T 1993 Difference scheme of soliton equations Future Directions of Nonlinear
Dynamics in Physical and Biological Systems (Lyngby, 1992) (NATO Adv. Sci. Inst. Ser. B Phys. vol 312)
ed P L Christiansen, J C Eilbeck and R D Parmentier (New York: Plenum) pp 7–15

[14] Li C X and Nimmo J J C 2009 A non-commutative semi-discrete Toda equation and its quasi-determinant
solutions Glasgow Math. J. 51A 121–7

[15] Lou S Y, Tong B, Jia M and Li J-H 2007 A coupled Volterra system and its exact solutions arXiv:0711.0420v1
[16] Nagai A and Satsuma J 1995 Discrete soliton equations and convergence acceleration algorithms Phys. Lett.

A 209 305–12
[17] Nagai A, Tokihiro T and Satsuma J 1998 The Toda molecule equation and the ε–algorithm Math. Comput.

67 1565–75
[18] Papageorgiou V, Grammaticos B and Ramani A 1996 Integrable difference equations and numerical analysis

algorithms Symmetries and Integrability of Difference Equations (CRM Proceedings and Lecture Notes
vol 9) ed D Levi et al (Providence, RI: AMS) pp 269–79

[19] Papageorgiou V, Grammaticos B and Ramani A 1993 Integrable lattices and convergence acceleration algorithms
Phys. Lett. A 179 111–5

[20] Shanks D 1955 Non linear transformations of divergent and slowly convergent sequences J. Math. Phys. 34
1–42

[21] Wynn P 1956 On a device for computing the em(Sn) transformation Math. Tables Aids Comput. 10 91–6
[22] Wynn P 1960 Confluent forms of certain nonlinear algorithms Arch. Math. 11 223–34
[23] Wynn P 1962 Acceleration techniques for iterated vector and matrix problems Math. Comput. 16 301–22
[24] Zhao H-Q and Zhu Z-N 2009 Multi-soliton, multi-positon, multi-negaton, and multi-periodic solutions of the

coupled Volterra lattice equation arXiv:0911.3458v1

11

http://dx.doi.org/10.1007/BF02575753
http://dx.doi.org/10.1007/BF01438262
http://dx.doi.org/10.1016/S0377-0427(00)00360-5
http://dx.doi.org/10.1088/0305-4470/34/48/329
http://dx.doi.org/10.1007/s11075-004-2843-6
http://dx.doi.org/10.1504/IJCSM.2007.013765
http://dx.doi.org/10.1017/S0962492906340019
http://dx.doi.org/10.1088/1751-8113/42/45/454002
http://dx.doi.org/10.1017/S0017089508004837
http://www.arxiv.org/abs/0711.0420v1
http://dx.doi.org/10.1016/0375-9601(95)00865-9
http://dx.doi.org/10.1090/S0025-5718-98-00987-9
http://dx.doi.org/10.1016/0375-9601(93)90658-M
http://dx.doi.org/10.2307/2002183
http://dx.doi.org/10.1007/BF01236936
http://dx.doi.org/10.2307/2004051
http://www.arxiv.org/abs/0911.3458v1

	1. Introduction and motivations
	2. The case of dimension 2
	3. Discrete algorithms
	3.1. The vector varepsilon-algorithm
	3.2. The topological varepsilon-algorithm
	3.3. The matrix varepsilon-algorithm

	4. Confluent algorithms
	4.1. The confluent vector
	4.2. The confluent topological
	4.3. The confluent matrix

	Acknowledgments
	References

